

Date Planned ://	Daily Tutorial Sheet-4	Expected Duration : 90 Min
Actual Date of Attempt ://	Level-1	Exact Duration :

46. For a reaction of reversible nature, net rate is

$$\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right) = k_1[A]^2 - k_2[C][B]$$

hence, given reaction is:

(A) $2A + \frac{1}{B} \rightleftharpoons C$

(B) 2A − B ===== C

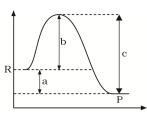
(C) 2A ← C – B

(D) None of these

47. In a first order reaction, the concentration of the reactant decreases from 800 mol/dm³ to 50 mol/dm³ in 2×10^4 sec. The rate constant of the reaction in \sec^{-1} is:

(A) 2×10^4

(B) 3.45×10^{-5}


(C) 1.386×10^{-4}

(D) 2×10^{-4}

48. The potential diagram for reaction $R \to P$ is given below: ΔH° of the reaction corresponds to the energy

- **(B)** b
- (C) b-c
- **(D)** c b

49. The reaction $A \to B$ follows first order kinetics. The time taken for 0.8 mole of A to produce 0.6 mole of B is 1 hour. What is the time taken for conversion of 0.9 mole of A to produce 0.675 mole of B?

(A) 1 hour

(B) 0.5 hour

(C) 0.25 hour

(D) 2 hours

50. DDT on exposure to water decomposes. How much time will it take for its 90% decomposition? (Half-life = 20 years)

(A) 50 years

(B) 67 years

(C) 500 years

(D) 700 years

51. The half-life of a reaction is halved as the initial concentration of the reactant is doubled. The order of reaction is:

- **(A)** 0.5
- **(B)** 1
- (C) 2
- (D)

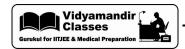
52. The rate constant of the reaction at temperature 200 K is 10 times less than the rate constant at 400 K. What is the activation energy of the reaction?

(A) 1842.4 R

(B) 921.2R

(C) 460.6 R

(D) 230.3 R

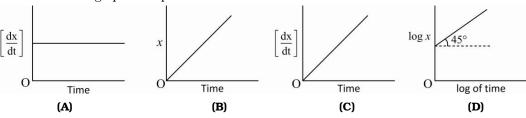

53. In the elementary reaction $2A + B \rightarrow A_2B$, if the concentration of A is doubled and that of B is halved, then the rate of reaction will:

(A) increase by 4 times

(B) decrease by 2 times

(C) increase by 2 times

(D) remain the same



- **54.** The rate constant k, for the reaction $N_2O_5(g) \to 2NO_2(g) + \frac{1}{2}O_2(g)$ is $2.3 \times 10^{-2} \, s^{-1}$. Which equation given below describes the change of $\left[N_2O_5\right]$ with time? $(\left[N_2O_5\right]_o$ and $\left[N_2O_5\right]_t$ correspond to the concentration of N_2O_5 initially and at time t.)
 - $\left[\mathbf{N}_2 \mathbf{O}_5 \right]_t = \left[\mathbf{N}_2 \mathbf{O}_5 \right]_0 + \mathbf{k} \mathbf{t}$
- (B) $\left[N_2 O_5 \right]_0 = \left[N_2 O_5 \right]_t e^{-kt}$
- (C) $\log[N_2O_5]_t = \log[N_2O_5]_o + kt$
- (**D**) $\ln \frac{\left[N_2 O_5\right]_0}{\left[N_2 O_5\right]_t} = kt$
- **55.** The rate of a first order reaction is $1.5 \times 10^{-2} \text{mol L}^{-1} \text{min}^{-1} \text{at } 0.5 \text{ M}$ concentration of the reactant. The half-life of the reaction is:
 - (A) 0.383 min
- **(B)** 23.1 min
- (C) 8.73 min
- **(D)** 7.53 min

- **56.** Which increases on increase of temperature?
 - (A) Energy of activation (E_a)
- **(B)** Collision frequency (Z)

(C) Rate constant (k)

- **(D)** Both (B) and (C)
- **57.** The disintegration rate of a radioactive sample at any instant is 4750 disintegrations per min. Five minutes later, the rate becomes 2700 per min. The half-life when the rate becomes 2700 per min.
 - **(A)** 6.3 min
- **(B)** 6.1 min
- **(C)** 6.5 min
- **(D)** 6 min.
- **58.** Which is not the graphical representation for the zeroth order reaction?

- **59.** The half-lives of two samples are 0.1 and 0.4 second. Their respective concentrations are 200 and 50 respectively. What is the order of the reaction?
 - (A)
- **(B)** 2
- **(C)** 1
- (D) 4
- **60.** The activation energy for most of the reactions is approximately 50 kJ mol⁻¹. The value of temperature coefficient for such reactions is:
 - (A) a₁
- approx 2
- **(B)** approx 3
- **(C)** < 1
- **(D)** > 4